Acta Cryst. (1967). 22, 111 # Crystal and Molecular Structure of a Chlorosulfonate of a Novel Cage Chlorocarbon, C₁₀Cl₁₁SO₃Cl, Determined by the Symbolic Addition Method* #### By Y. Okaya IBM Watson Research Center, Yorktown Heights, New York, 10598, U.S.A. ### AND A. BEDNOWITZ* *Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, U.S.A. (Received 15 April 1966) Hexachlorocyclopentadiene C_5Cl_6 dimerizes by catalytic action of aluminum chloride into an unusually stable chlorocarbon, $C_{10}Cl_{12}$. The configuration of the molecule has been studied by various physicochemical methods such as thermal and dielectric studies on crystals, nuclear magnetic resonance, infrared spectroscopic and dipole moment measurements of solutions. The results indicate that the molecule possesses a cage structure which consists of two cyclopentane rings connected by four single bonds. Since $C_{10}Cl_{12}$ exhibits a disordered structure in the room temperature phase, a chlorosulfonate group was introduced onto one of the apex carbon atoms. The material crystallizes in the monoclinic system with $a=16.75_8\pm0.003$, $b=8.75_3\pm0.002$, $c=14.45_9\pm0.003$, $\beta=112.0^{\circ}\pm0.1$; the space group is $P2_1/a$. The crystal structure was determined by the symbolic addition method and refined by the least-squares method. The basic cage structure is *trans* consisting of four cyclopentane and two cyclobutane rings, all of which are puckered. The chlorocarbon chlorosulfonate may then be called undecachloropentacyclo[5.3.0.0^{2,6}.0^{3,9}.0^{4,8}]decan-5-chlorosulfonate. The bond distances and angles in this fused ring system are discussed in detail. #### Introduction Hexachlorocyclopentadiene (I) C₅Cl₆ dimerizes by catalytic action of aluminum chloride to an unusually stable chlorocarbon, C₁₀Cl₁₂, of m.p. 485° (Prins, 1946; Newcomer & McBee, 1949 b). It was also reported that hexachlorocyclopentadiene gives a related ketone on reaction with liquid sulfur trioxide (Gilbert & Giolito, 1958). From an infrared study of the chlorocarbon and the ketone, McBee, Roberts, Idol & Earle (1956) concluded that these compounds have cage structures and proposed the structures (II) and (III) for the chlorocarbon and the ketone respectively. However, from the infrared spectroscopic evidence, it was impossible to decide the relative orientation of the top and the bottom five-membered rings in (II) and (III); there exist two possible configurations for the cage structure; one is *trans* as shown in (II) and the other gauche (IV) obtained by rotating one of the rings by 90°. The third possibility of *cis* configuration can be ruled out because of the relatively bulky chlorine groups on the two apex carbon atoms. Various physico-chemical results on the chlorocarbon favor the highly symmetrical trans (II) structure. A crystallographic study of C₁₀Cl₁₂ at room temperature reveals a cubic disordered structure which, below a transition point of 2.5 °C, transforms into a probably ordered orthorhombic structure. By raising the temperature, the cubic disordered structure changes into a cubic face-centered close-packed structure (at 122°) indicating rotation or completely statistical arrangement of molecules in the structure (see Fig. 1). Although these transitions are accompanied by specific heat anomalies, there is no dielectric anomaly associated with them (Okaya, Pepinsky & Gilbert, 1960); the molecule was also found to possess no dipole moment (Zijp & Gerding, 1958). A recent nuclear magnetic resonance study on C₁₀H₁₂ obtained from C₁₀Cl₁₂ by the action of LiAlH₄ also favors the trans configuration (McBee, Dilling & Braendlin, 1962). In view of these various data on the basic configuration of the cage structure, it seemed worthwhile to carry out crystal structure analyses of some cage chlorocarbon derivatives. The structure analysis will also reveal the shape of the cyclopentane as well as cyclobutane rings in such a condensed system. Since the basic chlorocarbon C₁₀Cl₁₂ shows disorder at room temperature, an attempt was made to introduce asymmetry into the structure. The symmetric as well as asymmetric cage molecules, C₁₀Cl₁₀Br₂, obtained by bromination on the apex carbon atoms (Gilbert & Lombardo, 1962) also exhibit similar disorder (Okaya, Pepinsky & Gilbert, 1960). Some of the results of ^{*} Research performed in part under the auspices of the U.S. Atomic Energy Commission. thermal studies are shown in Table 1. An effort was then made to incorporate a larger group on one of the apex carbons; this was achieved by causing hexachlorocyclopentadiene to react with HSO₃Cl thereby making a chlorosulfonate (V), C₁₀Cl₁₁OSO₂Cl (Newcomer & McBee, 1949a). Since the chlorosulfonate thus obtained can easily be transformed into the cage ketone by mild reaction with sodium hydroxide, it can safely be assumed that there is no change involved in the basic cage configuration. It should also be mentioned here that action of phosphorus pentachloride on the ketone produces the chlorocarbon $C_{10}Cl_{12}$ (II) (Gilbert, 1957). The present paper deals with the crystal and molecular structures of the chlorosulfonate directly determined by the symbolic addition method. ## **Experimental** Crystals of the chlorosulfonate used in data collection were obtained from toluene solution; they were ground into approximately spherical shape and Weissenberg photographs were taken around the c and b axes with filtered Cu $K\alpha$ radiation. The crystal belongs to the monoclinic system with $a = 16.75_8 \pm 0.003$, $b = 8.75_3 \pm 0.003$ 0.002, $c = 14.45_9 \pm 0.003$, $\beta = 112.0^{\circ} \pm 0.1^{\circ}$; the space group is $P2_1/a$. There are four molecular units of C₁₀Cl₁₁OSO₂Cl in the unit cell. Three-dimensional intensity data were obtained by visual comparison of multiple-film exposure photographs with a calibrated scale; the intensity data thus obtained were corrected for the Lorentz-polarization as well as absorption effects on an IBM 704 computer. Out of about 3500 independent reflections accessible in the Cu Kα limiting sphere, about 3000 reflections were strong enough to be observed. The data collection and the preliminary data handling were carried out in 1959 at the then Crystallographic Laboratory of the Pennsylvania State University. Since it was obvious that the crystal structure was not amenable to be studied by the conventional Patterson method, the structure determination Table 1. Phase transitions of the crystals of $C_{10}Cl_{12}$ and brominated compounds $C_{10}Cl_{10}Br_2^*$ | | L | ower transition | on | Opper transition | | | | | | |---|-------------|-----------------|--|------------------|--------------|---------------------------|--|--|--| | | Temperature | \overline{Q} | S | Temperatu | re Q | S | | | | | | (°C) | (Kcal.mol-1) | (cal.mol ⁻¹ . deg ⁻¹) | (°C) | (Kcal.mol-1) | $(cal.mol^{-1}.deg^{-1})$ | | | | | C ₁₀ Cl ₁₂ | 2.5 | $1 \cdot 0_0$ | 3.6 | 122 | 1.20 | 3.0 | | | | | Asymmetric C ₁₀ Cl ₁₀ Br ₂ | 77 | 1.80 | 5·1 | 107 | 1.30 | 3.0 | | | | | Symmetric C ₁₀ Cl ₁₀ Br ₂ | -24 | 0.64 | 2 ·6 | 135 | 1.81 | 4 ·5 | | | | ^{*} Taken from data of Okaya, Pepinsky & Gilbert (1960). Fig. 1. Specific heat curve of $C_{10}Cl_{12}$. The three phases are identified with their space group. was set aside until it became possible to utilize the symbolic addition direct method for determining centrosymmetric structures. An absolute scale factor and mean isotropic temperature factor were obtained by a Wilson statistical analysis. The normalized structure factor magnitudes, $E_{\rm H}$, were computed using the relation $$E_{\mathbf{H}}^2 = F_{\mathbf{H}}^2 / \sum_{i=1}^N \varepsilon f_{i\mathbf{H}}^2 \tag{1}$$ where ε is unity for all reflections other than h0l and 0k0, for which $\varepsilon = 2\cdot 0$. N is the number of atoms in the unit cell and the F's are on an absolute scale and corrected for thermal motion. Only those normalized structure factors greater than $1\cdot 4$ (13% of the total number observed) were used in the phase determination. #### Phase determination The symbolic addition procedure (Karle & Karle, 1963) was used to determine the phases directly from the normalized structure factor magnitudes. A computer program, SORTE, written in FORTRAN IV, was used to aid the implementation of the symbolic addition procedure (Bednowitz & Post, 1965). The phase relation used by this procedure is the Σ_2 formula (Karle & Hauptman, 1953) $$sE_{\mathbf{H}} \approx s \sum_{\mathbf{K}} E_{\mathbf{K}} E_{\mathbf{H} - \mathbf{K}}$$ (2) where s means 'sign of'. This formula describes the phase interaction between the reflection H and all other pairs K, H-K. The symbolic addition procedure requires only a few initially known phases in order to determine enough additional signs by formula (2) so that the main features of the structure can be obtained by Fourier analysis. Among the starting set of 'known' phases are three reflections chosen with arbitrary phase (+ or -) thereby fixing the origin for this space group. In addition, several other reflections were chosen and assigned symbolic phases. The starting set used in the present study is listed in Table 2. Each reflection chosen for the starting set has a relatively large |E| and enters into relatively many interactions as found in a listing of the first pass of the SORTE program. The first symbols assigned after the origin fixing (+) signs were a and b. The symbolic addition process did Table 2. Starting set of assigned phases and symbols for the application of Σ_2 | , | 1.1 | , , | |------|---------------------|------------------| | Sign | hkl | \boldsymbol{E} | | + | 3,2,4 | 3.08 | | + | 6,4,3 | 2.81 | | + | $4,1,\overline{10}$ | 2.43 | | а | 11,6,7 | 3.22 | | b | $4,2,\bar{1}$ | 2.73 | | c | 12,7,3 | 3.00 | | d | 11,2,1 | 2.65 |
| е | 12,2,4 | 3.22 | not progress very far before it was evident that additional symbols would be necessary. After assigning c, d and e, the process ran smoothly. As there were many early indications that $a \equiv be$, the symbol a was replaced by be, thereby reducing the total of unknown symbols to four. The probability formula associated with the Σ_2 relation is $$P_{+}(E_{\mathbf{H}}) = \frac{1}{2} + \frac{1}{2} \tanh \frac{\sigma_3 |E_{\mathbf{H}}| \Sigma_{\mathbf{K}} E_{\mathbf{K}} \cdot E_{\mathbf{H} - \mathbf{K}}}{\sigma_2^{3/2}},$$ (3) where $\sigma_n = \sum_{i=1}^N Z_i^n$. Z_j is the atomic number of the jth atom, and $P_{+}(E_{\rm H})$ is the probability of the sign of $E_{\rm H}$ being positive. In order to use this relation to make a programmed choice of the symbolic sign, (3) was modified to $$P_s(E_{\mathbf{H}}) \ge \frac{1}{2} + \frac{1}{2} \tanh \frac{\sigma_3 |E_{\mathbf{H}}| \cdot R_s}{\sigma_2^{3/2}},$$ (4) where P_s is the probability of s being a correct symbol. R_s is the difference between the sum of the double products associated with the dominant symbol (s) and the sum of the double products of all other symbols. Usually for large E there will be a dominant symbol whose associated double product sum is greater than the total sum associated with all other symbols. Occasionally a primary reflection (H) does not have a dominant symbol. In that case the phase is assumed to be temporarily indeterminate. Often this temporary indeterminancy can be removed by a suitable choice of sign values or relations among the symbolic phases. In fact many of the temporarily indeterminate reflections are extremely useful in obtaining information on relations between symbols, e.g. the relation $a \equiv be$ was obtained in just this fashion. After 254 reflections had been determined symbolically, several relations were evident among the symbols, suggesting the following sign values: b = -; c = +; d = +; e = -. Inserting these values enabled the phase determining process to develop a total of 383 signs (plus five truly indeterminate phases) with |E| greater than 1.4. Using these phases an E map was computed and an automatic peak search listed the maxima of the map in decreasing magnitude. The thirteen largest peaks were assumed to be the chlorine and sulfur positions. The lowest of these was about twice the magnitude of the peaks in the rapidly varying background. A check of the interpeak distances for twelve out of the thirteen largest peaks indicated that the distances were all greater than 2.8 Å; these results were in agreement with the expected distribution of chlorine to chlorine distances in the cage structures. Fig. 2 shows the final coordinates superimposed on a composite drawing of the threedimensional E map. Starting from the coordinates of those relatively heavy peaks found in the E map, the positions of the carbon atoms in the cage skeleton and the oxygen atoms in the chlorosulfonate group were obtained by iterative structure-factor calculations and difference electron-density syntheses. After the thirteen light atoms had been found in the difference syntheses, various views of the structure were drawn on an IBM 1627 X-Y plotter based on calculation done on an IBM 7094 computer (Okaya, 1966). The overall molecular shape is quite obvious in the drawings thus obtained (Fig. 3) and revealed the *trans* structure of the cage and the presence of a chlorosulfonate group on one of the apex carbon atoms. The atomic coordinates of all the atoms were then subjected to the least-squares treatment with anisotropic temperature factors to account for their thermal vibrations. After several cycles of this treatment with a full matrix refinement program, the error index $\Sigma ||F_o| - |F_c||/\Sigma |F_o|$ was reduced to 12.9%. Since the intensity data were recorded photographically and the accuracy is not too high, it was decided to terminate the refinement at this stage; the atomic coordinates, their standard deviations and thermal parameters thus obtained are shown in Table 3. Following are some of the details of the computation procedures; all computations at the later stages were done on IBM 7094 computers at the IBM Research Center and the Brookhaven National Laboratory. The atomic scattering factors used in the structure-factor calculation were those listed in International Tables for X-ray Crystallography (1962). The weighting scheme used in the least-squares refinement was: $$w = 1.0 \text{ for } |F_{\text{obs}}| \le 50.0$$ $w = 50.0/|F_{\text{obs}}| \text{ for } |F_{\text{obs}}| > 50.0;$ unobserved reflections were given zero weights. The shifts of parameters at the last stage were negligible compared with their standard deviations. None of the 383 reflections whose signs were directly determined had been assigned a phase different from that found by the structure factor calculation. Comparison between the observed and calculated structure factors is given in Table 4. ## Discussion The direct determination of the structure of the chlorosulfonate led to the unambiguous solution of the cage structure; it is composed of two five-membered saturated carbon rings connected by four single C-C bonds. The two apex atoms are in trans relationship with each other. The result is in agreement with indirect deductions based on various physico-chemical methods. The nomenclature of these compounds has been giving difficulty, although not ambiguity; the basic chlorocarbon $C_{10}Cl_{12}(II)$ can be expressed by any of the following pentacyclodecane schemes; (A) Dodecachloropentacyclo[5.3.0.0^{2,6}.0^{4,10}.0^{5,9}]decane with carbons 3 and 8 as the apices; (B) [5. 3. 0. $0^{2,6}$. $0^{3,9}$. $0^{4,8}$] with 5 and 10; (C) [5. 2. 1. $0^{2,6}$. $0^{3,9}$. $0^{5,8}$] with 4 and 10; and (D) [3. 3. 2. 02,6. 03,9. 07,10] with 4 and 8 as the apex carbon atoms. Accordingly the ketone, C₁₀Cl₁₀O (III) can be decachloropentacyclo[]-decan- Fig. 2. Composite drawing of the three-dimensional *E*-factor map, computed with 383 directly determined phases. The final atomic coordinates are shown by crosses. Fig. 3. Several views of the molecule illustrating the cage structure; the views are drawn on an IBM X-Y plotter by rotating the structure around various axes. The atomic coordinates and the peak heights, which were used in deciding proper shades for the atoms, are those obtained from electron-density maps before the refinement stage. The drawings are direct output from the plotter and no retouching was done on them. Fig. 4. Drawing of the molecule showing the skeleton structure and the numbering sequence based on one of the various representations of the pentacyclo system as discussed in the text. Note the chlorosulfonate group has been placed on carbon atom 10, which is equivalent to carbon atom 5. Table 3. Atomic coordinates and anisotropic temperature factors (a) Atomic coordinates in fractions of cell edges and their estimated standard deviations in 10-4 Å | Atom | x | $\sigma(x)$ | y | $\sigma(y)$ | z | $\sigma(z)$ | | | | | | | |-----------------------|----------|--|----------|---|---------|---|--|--|--|--|--|--| | Skeleton carbon atoms | | | | | | | | | | | | | | C(1) | 0.17669 | 6 | 0.15054 | 11 | 0.21470 | 9 | | | | | | | | C(2) | 0.24756 | 7 | 0.25032 | 11 | 0.19611 | 10 | | | | | | | | C(3) | 0.31814 | 7 | 0.12748 | 12 | 0.19823 | 9 | | | | | | | | C(4) | 0.37968 | 7 | 0.13283 | 12 | 0.31149 | 10 | | | | | | | | C(5) | 0.37531 | 8 | 0.28919 | 13 | 0.35116 | 12 | | | | | | | | C(6) | 0.27708 | 8
7 | 0.30187 | 12 | 0.30828 | 10 | | | | | | | | C(7) | 0.23592 | 7 | 0.15048 | 11 | 0.32543 | 9 | | | | | | | | C(8) | 0.31022 | 7 | 0.02801 | 12 | 0.32821 | 11 | | | | | | | | C(9) | 0.27795 | 7 | -0.02235 | 12 | 0.21424 | 11 | | | | | | | | C(10) | 0.17974 | 6 | -0.00922 | 12 | 0.17219 | 11 | | | | | | | | Chlorine a | toms | | | | | | | | | | | | | Cl(1) | 0.07571 | 1 | 0.23363 | 3 | 0.18403 | 3 | | | | | | | | Cl(2) | 0.21729 | | 0.38267 | 3
3
3
4
3
4
3
3
4
3
3 | 0.10062 | 3
3
3
3
3
3
3
3
3 | | | | | | | | Cl(3) | 0.35857 | 2
2
1
3
2
2
2
2
2
2
2
2 | 0.14324 | 3 | 0.10481 | 3 | | | | | | | | Cl(4) | 0.48057 | 1 | 0.05362 | 3 | 0.33980 | 3 | | | | | | | | Cl(5A) | 0.41427 | 3 | 0.28875 | 4 | 0.48455 | 3 | | | | | | | | Cl(5B) | 0.42680 | 2 | 0.42877 | 3 | 0.30693 | 3 | | | | | | | | Cl(6) | 0.23463 | 2 | 0.47250 | 3 | 0.33333 | 3 | | | | | | | | C1(7) | 0.19441 | 2 | 0.13160 | 4 | 0.41576 | 3 | | | | | | | | C1(8) | 0.33843 | 2 | -0.10662 | 3 | 0.42052 | 3 | | | | | | | | Cl(9) | 0.31935 | 2 | -0.19250 | 3 | 0.18868 | 3 | | | | | | | | Cl(10) | 0.13366 | 2 | -0.01851 | 3 | 0.04263 | 2 | | | | | | | | Chlorosulf | onate | | | | | | | | | | | | | S | 0.05940 | 1 | -0.19396 | 3 | 0.20159 | 3 | | | | | | | | Cl(S) | 0.05175 | | -0.35647 | 4 | 0.10313 | 3
4
7 | | | | | | | | O(10) | 0.15271 | 2
5
5 | -0.12591 | 8 | 0.22311 | 7 | | | | | | | | O(I) | -0.00554 | 5 | -0.08551 | 11 | 0.15388 | 10 | | | | | | | | O(IÍ) | 0.06752 | 7 | -0.26620 | 12 | 0.29141 | 10 | (b) Anisotropic temperature factors The β 's are used in the expression exp $\{-(\beta_{11}h^2+\beta_{22}k^2+\beta_{33}l^2+\beta_{12}hk+\beta_{13}hl+\beta_{23}kl)\}$ | Atom | β_{11} | β_{22} | β_{33} | eta_{12} | β_{13} | β_{23} | |------------|--------------|--------------|--------------|------------|--------------|--------------| | Skeleton c | arbon atom | | | | | | | C(1) | 0.00278 | 0.01377 | 0.00348 | 0.00120 | 0.00319 | 0.00120 | | C(2) | 0.00325 | 0.01062 | 0.00441 | 0.00005 | 0.00353 | 0.00178 | | C(3) | 0.00361 | 0.01542 | 0.00356 | 0.00147 | 0.00482 | 0.00273 | | C(4) | 0.00300 | 0.01518 | 0.00434 | 0.00253 | 0.00230 |
0.00174 | | C(5) | 0.00439 | 0.01645 | 0.00519 | 0.00077 | 0.00398 | -0.00091 | | C(6) | 0.00440 | 0.01273 | 0.00457 | 0.00006 | 0.00515 | 0.00041 | | C(7) | 0.00403 | 0.01172 | 0.00317 | 0.00142 | 0.00440 | 0.00136 | | C(8) | 0.00342 | 0.01263 | 0.00512 | 0.00079 | 0.00390 | 0.00075 | | C(9) | 0.00355 | 0.01440 | 0.00482 | 0.00064 | 0.00524 | -0.00195 | | C(10) | 0.00288 | 0.01293 | 0.00547 | -0.00008 | 0.00382 | 0.00177 | | Chlorine a | atoms | | | | | | | Cl(1) | 0.00331 | 0.01595 | 0.00843 | 0.00417 | 0.00627 | 0.00250 | | Cl(2) | 0.00531 | 0.01538 | 0.00565 | 0.00366 | 0.00600 | 0.00694 | | Cl(3) | 0.00464 | 0.01891 | 0.00596 | -0.00056 | 0.00808 | -0.00072 | | CI(4) | 0.00289 | 0.01837 | 0.00865 | 0.00263 | 0.00347 | 0.00161 | | Cl(5A) | 0.00681 | 0.02289 | 0.00422 | -0.00213 | 0.00144 | -0.00311 | | Cl(5B) | 0.00476 | 0.01489 | 0.00916 | -0.00422 | 0.00640 | -0.00010 | | CI(6) | 0.00658 | 0.01340 | 0.00709 | 0.00206 | 0.00739 | -0.00354 | | Cl(7) | 0.00659 | 0.02255 | 0.00553 | 0.00082 | 0.00954 | 0.00212 | | Cl(8) | 0.00537 | 0.01678 | 0.00590 | 0.00127 | 0.00302 | 0.00793 | | Cl(9) | 0.00458 | 0.01244 | 0.00895 | 0.00263 | 0.00673 | -0.00208 | | Cl(10) | 0.00491 | 0.01892 | 0.00369 | -0.00086 | 0.00342 | -0.00132 | | Chlorosul | fonate | | | | | | | S | 0.00337 | 0.01547 | 0.00652 | -0.00233 | 0.00484 | -0.00059 | | Čl(S) | 0.00622 | 0.01785 | 0.01135 | -0.00338 | 0.00709 | -0.00756 | | O(10) | 0.00341 | 0.01480 | 0.00503 | -0.00244 | 0.00359 | 0.00206 | | O(I) | 0.00326 | 0.02204 | 0.00917 | 0.00138 | 0.00448 | -0.00086 | | O(II) | | | | | | | *n*-one; where *n* stands for one of the two apex carbons of each scheme (customarily use the smaller number). For the chlorosulfonate, $C_{10}Cl_{11}OSO_2Cl$ (V), the structure of which has been studied here, one can assign undecachloropentacyclo decan-*n*-chlorosulfonate. One of the combinations, (B) undecachloropenta-cyclo-[5.3.0.0^{2,6}.0^{3,9}.0^{4,8}]decan-5-chlorosulfonate, has been given in the abstract. The atomic numbering based on scheme (B) will be used in the following discussions. Since the basic cage structure is centrosymmetric and carbon atoms 5 and 10 in this scheme are equivalent, the chlorosulfonate has been placed on carbon atom 10 rather than on 5 for the number sequence shown in Fig. 4. The connection of the two five-membered rings described above produces two four-membered cyclobu- Table 4. Comparison of observed and calculated structure factors (\times 10) H & L FORS 1 6 135 1 7 135 1 7 135 1 7 15 1 7 48 14 1 2 217 1 3 81 1 5 40 17 1 2 75 1 7 48 14 1 2 217 1 3 81 1 5 40 17 1 2 75 1 3 74 1 4 17 CALLED THE CONTROL OF grifterer elikerbossente goldskinder historiste bringsprick kindsbilden bestie ene kolsten kindsbil brigg mi FCAL 122 89 350 111 87 57 195 82 81 TANK TO THE T F085 232 46 458 410 357 148 152 116 63 CATALOGUE AND THE CONTROL OF CON # K L FOBS FCAL electricities englectrica eggies-second crestantiba excision bitanic andiana and eng secondaries engineeristes egg HARRICHERT ENGINEERE ENGINEERE STERREIBE JOHN JOHN STERRE STERFER HILLIAN EN FERFERE EN FERFERE FOR ASSESSED AND ASSESSED 7) 122 170 THE TOTAL THE PROPERTY OF The state of s 01271417181 0124417181 01244178101 012777710 0244178 22774 012745 6 01277 27 07 tane rings and eventually makes additional two fivemembered cyclopentane rings. Fig. 5 is a drawing of the molecule in a stereoscopic pair to demonstrate the ring system, molecular configuration and the orientation and relative magnitude of the thermal ellipsoids. It is of interest to study in detail the shape and size of these ring systems. The problem in building this skeleton is that of stretching two opposite edges of a cube* * Cubane, C_8H_8 , pentacyclo[4.2.0.0^{2.5},0^{3.8},0^{4.7}]octane, may be considered as the starting cube. The structure of this cube molecule was studied by Fleischer (1964); C-C, 1·55₃ and 1·54₉ Å; C-C-C 89·3, 89·6 and 90·5°. ## Table 4 (cont.) | | | | | | | | | | | | | | | •••• | _ | | | | _ | | *** | | |---|---|--|-----|---|--|--|----|--|---|--|----|---|---|--|---|--
--|--|----|--|--|---| | # 5 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | FORS 6-48 138 1-30 7-49 137 1-27 137 128 139 129 129 129 129 129 129 129 129 129 12 | 7C4L
170
170
121
100
151
100
151
123 | | į | 700
1111
1111
1110
1111
1110
1111
1111 | 91
158
251
115
527
276
151
247
276
141 | • | 7 10 | 170
91
120 | 132
14
127 | | | 153 | 186 | | 8 -3
0 -4
0 -5
0 -6
0 -7
0 -8
0 -9
0 -10 | FORS
202
595
867
117
150
479
110
141
546
143
725 | FCAL
209
494
494
170
100
113
351
80
96
413
139
211 | | 1-13 | F085
259
251
100
51 | 233
223
223
74 | | 1 1 | 30 |); | | : | 1113 | 113 | | 7 12 | 120 | 127 | | • • | 153
116
130 | 1113 | | 0 -6 | R67 | 770 | | 1-10 | 31 | | | 1 | 447 | 426 | : | | 114 | 151 | | 1 3 | 100 | 146 | 7 | : : | 74
92
158 | 23
134 | | 0 -8 | 110 | 353 | • | 1 - 3 | 727 | 285
629 | | 3.5 | 34 | 18 | : | 1
2
3
4
5
10
11
11 | 122 | 225 | | 7 0 7 7 7 7 7 7 7 7 7 1 1 | 181
247
148
87
436
172
417
142
105 | 100
217
140
48
344
181
514
144
45 | | | 193 | 140 | | 0 -3
0 -4
0 -5
0 -8
0 -7
0 -8
0 -9
0 -10
0 -12
0 -13 | 141 | 413 | | i | 535 | 912 | | 5 14 | 134 | 123 | | | 50 | | | ! ! | 142 | 124 | | 10 3 | 19)
87
156
5) | 140
77
128
61 | | 0-15 | 725 | 211 | | 1 -7 | 610
648 | 349
75 | | 1 1 3 | 741 | 550
144
674
167
74
247
213
145
220
174
211
115 | 2 | 1 2 3 | . 37 | 102
102
101
100
140
113
407
90
97 | | | 166 | 105 | | | 105 | 114 | | 0 -3
0 -4
0 -5
0 -8
0 -9
0-12
0-13 | 230
248
222
136
139
323 | 151 | | 1 -1
1 -2
1 -3
1 -6
1 -5
1 -6
1 -7
1 -8
1 -9
1 -11
1 -13
1 -14
1 -15
1 -17
1 -18 | 368
727
109
1072
535
630
648
85
196
272
179
241
282
89
121
238 | 285
629
95
812
673
520
549
75
104
290
171
191
231
99
117
251 | | 3 : | 25 | 74 | 5 | : : | 144 | 140 | ٠ | ; ; | 115 | 190 | | 10 6 | 102
54
31 | 114 | | 0 -3
0 -4 | 222
136 | 100 | | 1-14 | 241
262 | 191 | | ; ; | 186 | 313 | - 1 | ; | 401 | 96 | | 1 1 | 100 | 314 | 2 | 10 0 | 89
75 | | | 0-12 | 323 | 291 | | 1-16 | 171 | 117 | | 3 10
3 11
3 12 | 172 | 114 | | 117 | 152 | 158 | | 7 0
7 1
7 2
7 3
7 6
7 7
7 10 | 479
115
224
100
323
100
1-1 | 416
7,
190
97
334
117
154 | , | 10 0
10 1
10 5 | 186
182
104 | 198
162
102 | | 0 -2 | 376 | 393 | 10 | 1 -1 | *80 | 914 | | 3 !! | 34 | 111 | ' | , , | 166 | 657 | ٠ | | 21 | 84
72 | | | | 102 | | 0 -) | 115 | 126 | | 1 - 3 | 714
1287 | 401
612
1072 | | 2 5 0 | | | 3 | 0 1 2 3 3 4 5 5 5
5 7 5 7 5 7 5 10 5 11 | 100
100
100
100
100
100
100
100
100
100 | 156
557
854
450
116
450
110
254
25 | | 7 0
7 1
7 2
7 3
7 5
7 6
7 9 | 41
84
54
55
78
2-1
139
280
72
102
35
261
65 | 84
79
107
49
118
181
409
142
240
77
77
73
191
24 | | 10 2 | 60
84
71 | 52
#1
63 | | 0 -7 | 376
133
115
425
74
70
197
232
198 | 93
151
174
106
107
291
90
393
125
126
355
66
257
268 | | - | +80
502
714
1287
237
459
469
182
205
301
303
321
319
84 | 018
401
612
1072
237
380
369
153
193
218
291
291
277
86 | | 3 1 | 169 | 162 | | ; | 726
190 | 180 | | 7 1 | 78
78 | 110 | | 10 2 | 178 | 100 | | 0-11 | 232
148 | 257
264 | | 1-10 | 162 | 153 | | 2 5 0
5 1
5 3
5 6
5 7
5 8
5 10
5 11
5 13 | 70
774
169
87
129
110
230
70 | 73
102
73
138
171
97
132
269
82 | | 10 | 232 | 254 | 7 | | *** | 409 | | 10 0
10 2 | 90
116 | 107 | ı | 1 -1 | 932 | 1244 | | 1-13 | 301 | 218
291 | | 3 10
5 11 | 110 | 132 | | | 94 | 98 | | 7 0
7 1
7 4
7 6
7 6
7 7 | 280 | 200 | 0 | 11 1
11 2
11 3 | 126
49
77 | 101
43
79 | | i -} | 381 | 342 | | 1-17
1-18 | 319 | 277
8G | | 5 13 | | | | 0 1 2 2 3 4 4 6 6 7 | 249 | 736 | | ; ; | 35 | 77
53 | | 11 1 | 35 | 74 | | 1 -6 | 1267 | 1106 | 11 | 1 -1 | 245 | 229 | | , ; ; | 355 | 394 | | : : | 185 | 165 | | | ** | 24 | | 11 0 | 62 | ** | | 1 - | 30 S | 269
857 | | 1-3 | 170 | 150 | | 3 5 0
5 1
5 2
5 4
5 5
7 7
5 8
5 9
5 10
5 11 | 175
355
303
65
402
509
194
207
79
119 | 179
394
368
80
377
541
194
225
72
117 | | 0 0 1 0 1 0 1 1 0 1 2 0 1 1 0 1 2 0 | 94 | 98
506
236
137
185
107
437
114
79
154
154
154
154
155
161
172
161
127
127
128 | ٠ | 7 3 7 5 | 540
362
106
159 | 404
282
113
185 | 2 | 0 -1
0 -2
0 -3
0 -4
0 -5
0 -7
0 -8
0 -9
0 -10
0 -12
0 -13
0 -14
0 -15
0 -16
0 -17 | 147 | 178
1728
421
84
68
1980
52
862
491
170
158
181
43
120
130
234 | | 1-11 | 932
202
20
381
1246
1207
381
303
954
219
307
277
194
120 | 1244
205
7
342
1331
1106
332
249
857
200
282
253
164
116 | | i -6 | 352 | 229
644
358
15C
824
327
589
262
628 | | | 207 | 194 | | 6 11 | 173 | 114 | | | 159 | 185
95
308 | | 0 -3 | 147
1090
298
128
113
2021
32
940
524
159
104
166
49
127
107 | *21 | | 1-14 | 120 | 116 | | 1 -9 | 283
544 | 428 | | 5 li | 119 | 117 | , | 6 0
6 1
6 2
6 3
6 4
6 5
6 7
6 6
7 6 9
6 10
6 11 | 174 | 154 | | 7 0 | 123 | 306 | | 0 -9 | 2021 | 1980 | 2 | 1 -1 | 877
458
87
133
1880
631
871
830
160
314
501
129
111 | 962
510
68
1769
603
763
690
122
248
611
92
91 | | 1-12 | 143 | 126
11C | | * 5 0 | 265 | 236
555 | | : : | 199 | 111 | 10 | ; ; | 185 | 157 | | 0 -0 | 524
159 | 491 | | 17 | 133
1880 | 104
1769 | | 1-15 | 118 | 87 | | 3 3 | 133 | 187 | | • ; | 155 | 155 | 11 | 7 L
7 L | 180
71
205 | 167
92
164 | | 0-12 | 166 | 101 | | 1 -6 | 871
871 | 743 | | 1-17 | 110 | 111 | | 5 0
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 12
5 12 | 253 | 210 | | 10 | 140 | 141 | 12 | 7 1 | 197 | 171 | | 0-14 | 102 | 120 | | 1-10 | 160 | 122 | 15 | 1 -1 | 142 | 147 | | 5 6
5 7
5 8
5 10
5 12
5 13 | 204 | 25 L
186 | | . 12 | 34 | 49 | ۰ | | 251
220 | 105 | | 0-17 | 204 | 254 | | 1-13 | 129 | *** | | 13 | 140 | 143 | | | 265
508
133
139
127
193
210
264
193
175 | 236
555
1187
1117
120
120
120
120
120
130
251
89
217
202
218
213
213
213
213
213
213
213
213
213
213 | ٠ | 6 0
6 2
6 3
6 5
6 6
8 6 | 94
585
249
141
185
129
91
101
173
101
174
810
47
149
149
149
149
149
149
149
149
149
149 | 263
27
177
226
[43]
174
88
153 | | 6 0
8 1
8 2
8 3
8 4
8 7
8 8
9 9
9 10
8 11
8 12 | 251
220
249
108
228
402
103
68
61
183 | 271
201
194
227
103
177
339
71
54
59
52
185
174
154
174
156
175
174
174
175
176
177 | ٠ | 0 -1 0 -2 0 -4 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 430
588
19
10
10
12
22
48
12
12
48
91
53
10
68
91
62
10
68
78
62
17
63
63
63
63
63
63
63
63
63
63
63
63
63 | 502
726
31
2364
8468
1362
36
451
116
90
90
1079
1079
1079
827
1148
11979
827
827
828
848
848
848
848
848
848
848
848
848 | | 1-16 | 110 | | | 1-10 | 245 800 427 170 801 1118 817 285 115 817 110 8 | 381
756 | | 5 5 0 | 331
37
195
192
203
207
411
127
355
10
90
85 | 327 | | • ; | 119 | 143 | | ; | 101 | 339 | | 0 -5 | 1605 | 2364 | • | 13 | 111 | 149
84
352
255
531
300
445
445
445
445
117
78
224 | | i-ii | 100 | 756
236
144
87
155
205 | | 3 3 | 195 | 715 | | | 39 | 88 | | : : | 01 | . 54 | | 0 -6 | 1242 | 36 | | 13 | 455 | 155
531 | | 1-14 | 240 | 205 | | 1 | 201 | 218 | | | *** | 41 | | 111 | 71 | 59
52 | | 0 -9 | 94 | 451 | | 1 -7 | 531
463 | 330 | 13 | 1 -1 | 310 | 275 | | 3 6 | 127 | 137
366 | ' | • 1 | 130
360
38 | 349 | ı
 | 174 | 185 | | 0-11 | 915 | 998 | | 1-10 | 624
652
193 | 495
646
193 | | 1 -3 | 240
616
223 | 273
495
241
520
203
319 | | 5 10
5 12 | 93 | 83 | | • ; | 367
60 | 87 | | : : | 123 | 174 | | 0-16 | 196 | 103 | | 1-13 | 132 | 117 | | 1 - | 430 | 319 | | | 198 | 252 | | 6 0
6 1
6 2
6 3
6 4
6 5
6 7
6 7 | 130
363
38
367
80
318
152
131
43 | 132 | | | 112 | 122 | ٠ | 0 -1 | 1058 | 1074 | | 1-15 | 120 | 110 | | 1-13 | 137 | 126
137
445
285 | | • 5 0
5 1
5 2
5 3
5 4
5 5
6 5
7 5 11
5 12 | 198
24
182
136
216
131
36
156
151 | 252
105
248
184
274
164
61
169
103 | | | 109 | 125
349
69
346
87
323
169
132
44
135
209
200
217
229
63 | | 8 0
8 1
8 3
8 4
8 5
9 9 | 174
147
108
123
74
58
117
91
127 | 137 | | 0 -3 | 784 | 997 | ٠ | 1-17 | 154
455
381
455
531
455
531
453
479
100
170
272
518
520
479
1107
107
107
107
107
107
107
107
107
10 | 540 | 14 | 1-16 | 391 | | | 3 3 | 131 | 164 | ٠ | 6 1
6 3
6 5
6 10 | 213
180
215
210
39 | 209 | 2 | • • | 415 | 366 | | 0 -7 | 884 | 827 | | 1 -3 | 520
479 | 540
459
553
40
102
116
935
421
103
308
137 | | 13 | 343
205 | 187 | | 5 7
5 11
5 12 | 151 | 103 | | | 39 | 229 | | 8 1
8 7
8 8
8 9
8 10 | 415
60
70
104
52 | 76
82 | | 0-10 | 273 | 294 | | 1 - | 120 | 102 | | 1 -6 | 275
129 | 255 | | | 5+1 | 575 | • | • ° | 100 | 123 | | 8 10 | 52 | 104 | | 0-11
0-12
0-13 | 279
190 | *** | | 1-12 | 47a | 421
103 | | 1-10
1-12 | 474 | 413
351 | | | 274 | 275 | | 6 L
6 4
6 5 | 100
202
75
177
193 | 123
207
25
211
181
104 | , | : : | 303 | 267 | | 0-14 | 76 | ** | | 1-13 | 133 | 137 | | 1-13 | 213 | 455 | | 7 5 1
5 3
5 7
5 10
5 8
5 11 | 541
829
274
74
43
27
191 | 575
882
275
69
46
89 | | | *** | 104 | | 8 10
8 10
8 10
8 10
8 10 | 157
303
109
95
60
175
121
148
161
55 | 300
109
70
82
100
60
157
207
104
81
98
191
110
100
172
47 | | 0-17 | 131 | iii | , | 1 -1 | 1538 | 1375 | | 1-17 | 550
343
205
311
275
129
474
420
473
445
233
237
268 | 328
187
202
255
123
413
351
499
455
205
221
275 | | | | 157 | 10 | • 0
• 1
• 5
• 5 | 156
191
58
110
173 | 151
187
63
111
171
60 | ٠ | | 175 | 98 | • | 0 -2 | 494
994
334
258
258
27
1082
990
1199
901
330
118
138
134
224 | 417
864
475
297
214
429
877
1302
877
1302
877
1302
877
1302
877
1302
877 | | 1 -3 | 1985
724 | 1375
93
1887
718
221
189
678
298
405
168
7
7
300
83
290
83
297
84 | 15 | 1 -1 | 109 | 112 | | 4 3 2
3 4
5 5
5 6
7 0
7 10 | 99
131
233
90
54
87 | 157
141
276
113
73
124 | | : : | 173 | 111 | | 8 0
8 2
8 3
8 4 | 121 | 116 | | 0 | 334
256 | 214 | | 1 -5 | 257 | 189 | | [-] | 109
110
339
111
157
203
110
609
216
391
125
326
92
58 | 112
137
280
117
165
173
121 | | 5 10 | 37 | 124 | 11 | | 109 | 115 | | | *** | *** | | 0 -1 | 1082 | 962 | | 1 - | 332 | 288 | | 1-3 | 203 | 173 | | 9 5 0 | 57
363
92
38
423
117 | 432 | | 0 1
6 4
6 5 | 109
138
94
172
120 | 115
153
48
159
149 | , | 1 2
1 3
1 3 | 124
199
97
77 | 140
202
92
53 | | 0-10 | 1369 | 1362 | | 1-10 | 149 | 163 | | 1 -9 | 216
391 | 185 | | . 5 2 | 38 | \$4
94
54
514 | 12 | • • | 120
267
68 | 243 | | | 150 | 282 | | 0-12
0-13 | 901
336 | 348 | | 1-13 | 218 | 500 | | 1-12 | 324 | 132
247
102 | | | 117 | | | | | 283
93
127
64
150 | | 6 1
7 3 | 154
118
140 | 140 | | 0-15 | 136 | | | 1-15 | 116 | 296
237 | | i-16 | 58 | 102 | | 16 \$ 1
\$ 2
\$ 4
\$ 5
\$ 7 | 211
43
192
101
138
56 | 123
234
122
159 | | : ; | 176
62
126 | 150 | 7 | | 179
139
115
99
70
63
108 | 282
97
140
209
136
100
61
62
62
65 | 10 | 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 949 | 244 | ٠ | 1 -1 | | 765 | | 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | 167
174
196
123
311
223
183
260 | 164
202
178
195
127
918
226
175
290
183 | | ; ; | 138 | 159 | 14 | 6 0
6 2 | 187
239 | 475
406 | | * 0
* 2
* 3
* 4
* 5
* 7 | 70 | 100 | | 0 - 3 | 949
485
705
712
111
662
213
525 | 744
370
341
596
81
570
170
437
78 | | 13 | 1200 | 765
361
435
1242
95
150
883
178 | | 1 -7 | 123 | 127 | | 11 5 0 | 223
82
115 | 132
121 | 15 |
. ! | 210
95
148 | 210
112
164 | | | 108 | * | | 0 -6
0 -7 | 111
662
213 | 570
170 | | 1 - 7 | 162 | 150
253 | | 1-10 | 183 | 175 | | 5 3 | 115 | 121 | | | | | ٥ | | | | | 0 -9 | 525 | 137 | | 1 -6 | 168
124 | 176 | | 1-12 | 101 | 183 | | 5 3
5 4
5 5
5 6 | 137
53
94
97 | 170
63
138
107 | 16 | | 43 | 55 | · | 9 1 9 2 9 9 9 9 9 | 75
309 | 53
227 | | 0-12 | 140
245
351
113
104
151
276 | 252 | | 1-10 | 213 | 212
152 | | i- i+ | 105 | 122 | | 3 7 | ** | 107 | ۰ | ; ; | 790 | 824 | | : ; | 129 | 129 | | 0-14 | 113 | 252
337
78
87
127
347 | | 1-13 | 240 | 244 | 17 | 13 | 140 | 159 | | 12 5 0 | 274
192
87
111
116 | 371
231
97
143
147 | | 7 1
7 2
7 3
7 4
7 5
7 6
7 0
7 10
7 11
7 12 | 123
790
28
386
137
332
188
200
268 | 138
824
61
367
142
314
181
227
270
155 | | 9 1 | 427
75
309
129
127
130
177
271 | 298
53
227
129
127
127
151
217 | | 0-18 | 276 | 347 | | 0 | 310 | 41
212
152
72
244
229
216
258 | | 1-10 | 208
140
100
101
131
88
184
249
207
120 | 159
112
85
106
106
97
197
227
212
262 | | 12 5 0 | 111 | 143 | | 7 10 | 188 | 181
222 | ı | | 127 | 123 | 12 | 0 -1 | 1394
864
130 | 734
132 | | 1 -1 | 2229 | 2023 | | 1-11 | 184 | 97
197
227 | | | 95 | 142 | | 7 11 | | 155 | | * 2 | 127
77
89
158
106 | 123
96
116
182
127 | | 0 -1
0 -2
0 -3
0 -4
0 -5
0 -6
0 -7
0 -8
0 -10
0 -12
0 -13
0 -15
0 -16
0 -17 | 1394
864
130
133
113
113
272
347
200
149
148
63
63
100
200
200
202
103
246
245
345
245
347
247
247
247
247
247
248
248
248
248
248
248
248
248 | 1145
734
132
234
938
37 | | 13 | 256
347 | 2023
587
241
340
353
225
102
35
458
170
296
405
181
128
79
185 | | 1-15 | 120 | 162 | | 13 5 0
5 1
5 2
5 3 | 95
83
96
0 | 142
161
133
48
128 | 1 | 7 0
7 1
7 2
7 3
7 5
7 10
7 11
7 12
7 0
7 2
7 3
7 7
7 7
7 7
7 10
7 11 | 447
273
284
171
195
74
325
170
83 | 201
201
204
108
214
77
375
133 | 2 | | | 59 | | 0 -7 | 222 | 851
167 | | 1 - | 271
100 | 225
192 | 18 | 1 -1 | 426
217
256
159
204
91
179
356
83
283
271
287 | 321
194
235
135
17C
39
144
310
77
245
259
331 | | 14 3 3 | 187 | 209
75 | | ; ; | 171 | 168 | | 9 0
9 1
9 5
9 6 | 201
201
204
29 | 344
89
105
70
95 | | 0-10
0-12 | 200
119 | 192
107 | | 1-10 | 508
155 | 458
170 | | 1 -3 | 256
159
204 | 235
135
170 | | | | | | 7 10 | 325
173 | 375
131 | | | :: | 70 | | 0-14 | 148
614 | 432 | | 1-17 | 311
113 | 137 | | 1 -7 | 91
179 | 39
144
310 | | 15 5 0 | 108
264
53 | 96
221
76
64
95
46 | | 7 12 | 83 | 90 | 3 | 9 0 | | 104 | | 0-16
0-17 | 188 | 139 | | 1-15 | 391
145 | 101 | | 1-10
1-11 | 263 | 777 | | | | 98 | 4 | ; ; | 81
90 | 71 | | 9 0 | 134 | 104
187
87
138
149 | 14 | 0 -t | 100
200 | 75
100 | | 1-17 | 35
157 | 79
165 | | 1-14 | 207 | 331 | | 14 5 0 | | | | 7 0
7 2
7 3
7 7
7 7
7 10
7 11 | 367
81
40
37
126
104
34 | 314
71
61
72
161
120
71 | ٠ | | 171 | 170 | | 0 -1
0 -2
0 -3
0 -4
0 -5
0 -6
0 -7
0 -8
0 -1
0 -1
0 -1
0 -1
0 -1 | 142 | 75
100
414
104
773
239
137
107
303
174
174
174
401
132
75 | • | 1 -1 | 1670 | 1378 | 19 | 1 -3 | 106
154
456
186
102
103 | 181
95
150
338
181
124
155 | | • • 1 | 267
423 | 394 | | | 103 | 144 | | ; ; | 174 | 254
151 | | 0 - | 142 | 135 | | 1 - | 295
324 | 232
302 | | 1 - | 136 | 376 | | 0 & 0
6 I
6 Z
6 3
6 7
6 8 | 267
423
73
26
97
306
14 | 223
396
49
15
09
311
61
87 | 3 | | 197 | 104 | | 9 0 | 171
108
295
176
254
137
253
69 | 170
85
256
151
193
122
216
59 | | 0 -9 | 345 | 303 | | 1 | 404
421 | 327
343 | | 1-13 | | | | : 3 | 306
74
72 | 511
61
87 | | 7 0
7 1
7 2
7 3
7 4
7 5
7 6 | 237
265
539 | 223
208 | | | 144 | 113 | | 0-12
0-15
0-16 | 291
771
127 | 174
491
132 | | 1 -0 | 452
351
174 | 318
164 | 20 | 1 -1 | 113
143
268 | 161
185
252 | | 1 4 0 | 107 | 114 | | 7 5 | 197
41
237
265
539
407
139 |
184
269
223
468
345
164 | | 9 2 | 108
177
308 | 56
147
220 | 10 | 0-17 | 163 | 75 | | 1 -1 1 -2 1 -4 1 -5 1 -6 1 1 -7 1 1 1 -7 1 1 1 -7 1 1 1 -7 1 1 1 -7 1 1 1 1 | 13-16 7-4 1985 7-7 19 | 1378
54
232
302
378
327
343
569
318
166
627
425 | | 1-14
1-15
1-17
1-18
1-19
1-11
1-13
1-15
1-13
1-15
1-15
1-16
1-17
1-18
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19
1-19 | 113
143
268
108
176 | 161
165
252
96
214
111 | | | | | | | | | | | .,, | | | | | | | | | | | | | | and making two sets of two five-membered rings with angles as close as possible to the normal carbon singlebond angle. This construction leads to a distortion of the four-membered rings from the ideal square configuration. Fig. 6(a) illustrates the bond distances in all those ring systems. In spite of the presence of OSO₂Cl on one of the apex carbon atoms, the basic cage is approximately centrosymmetric. The configurations of the cyclobutane rings in the cage molecule can be compared with several other compounds with cyclobutane rings. For example, the centrosymmetric isomer of 1,2,3,4-tetraphenylcyclobutane, $C_4H_4(C_6H_5)_4$ (Dunitz, 1949; refined later by Margulis, 1965), has a planar square ring with the average C-C of 1.57 Å. Also with a square planar ring is 1,2,3,4-cis-trans-cis-tetracyanocyclobutane, C₄H₄(CN)₄, with an average C-C of 1.55 Å (Greenberg & Post, 1966). For the case of octachlorocyclobutane, C₄Cl₈ (Owen & Hoard, 1951; Margulis, 1965), the ring is non-planar with angles ## Table 4 (cont.) energe estadistative generalizative ogganizative entenderative estadist estadistative WITTER STREET, TO STRE Canada and the state of sta entropy of the state sta generalis enicidestrike bygendigene giverkingen eighberken betygrent indhinget beskingsbiete tipkken eighberen ATTEL MICHIENDER ASSETTED DER AND THE TOTAL MET TOTAL STREET AND THE STREET STREET TOTAL STREET STREET AND THE Carry District Control of the Contro יינים מוליולים מוליים מוליים מוליים מוליים למוליים מוליים מ AND THE PROPERTY OF PROPER לונות לונות המולות לונות לונות להמולות לונות לונות להמולות PROPERTY OF THE TH around 88° and the average C-C of 1.57 Å. An electron diffraction study of cyclobutane, C₄H₈, gives 1.548 ± 0.003 Å for the C-C distances (Almenningen, Bastiansen & Skancke, 1961) with a puckered configuration. For the present molecule, the average C-C is 1.57 Å with the angles around 87° thus forming puckered rings. The carbon atoms in the cage skeleton can be classified in three categories; (a) C(5) and C(10), the apex carbon atoms; (b) C(2), C(3), C(7) and C(8) which are furthest from the apices; and (c) C(1), C(9), C(4) and C(6) which have apex carbon atoms as neighbors. As shown in Fig.7, the angles in the four puckered cyclopentane rings exhibit interesting features. The two angles around the carbons in group (a) are about 96° ; those around group (b) and (c) are 101° and 108°, respectively. Similar narrow angles around the apex carbons can be found in C_8F_{12} , a saturated dimer of hexafluorobutadiene; the average apex angle is 97° (Karle, Karle, Owen & Hoard, 1965). Because of the strain, the cyclopentane rings take configurations different from the free cyclopentane molecule. The bond angles formed outside of the skeleton have interesting features worth mentioning. Fig. 8 lists those angles involving chlorine atoms and the bridge oxygen atom of the chlorosulfonate, O(10). ## Table 4 (cont.) A BUINGER SULFACE SERVICE TO SERVICE THE SERVICE SERVI Control of the contro Circumsters into the control of enter the state of TO THE PROPERTY OF PROPERT Control of the state sta TOTAL TOTAL PROPERTY OF THE PR CALL THE PARTY OF STREET OF THE ST TOTAL TOTAL CONTROL CO Fig. 5. Stereoscopic drawing of the structure depicting the relative magnitude of the thermal ellipsoids. Prepared with the computer program by Johnson (1965) and an incremental digital X-Y plotter. Fig. 6. Bond distances (a) in the skeleton, (b) from the skeleton. The carbon atoms in the skeleton can again be divided into the three groups mentioned previously, with respect to the angles in the rings. The three Cl-C-C angles around each carbon atom belonging to group (b) are about 121, 121 and 117°. The larger two angles are always formed by the chlorine and the carbon atoms in the cyclobutane rings to which the
central carbon belongs; the third and smaller angle Fig. 7. Bond angles in the ring systems. (a) Cyclobutane rings. (b) Cyclopentane rings. For three groups into which the skeleton carbon atoms are classified, see text. involves the next neighbor carbon in the cyclopentane ring. For the carbon atoms in group (c), the three Cl-C-C angles are similar with no systematic variation observable. The angles around the apex carbons, group (a), are also normal; the deviations from the usual tetrahedral angle can be easily explained by the narrow intra-ring angles. The C-Cl distances are also normal with the average value of 1.74 Å. The shape and dimensions of the chlorosulfonate group are shown in Fig. 9. The large O(I)-S-O(II) angle of 123° can be attributed to the localized double bond character for these two oxygen atoms, because of the presence of a chlorine atom and the bridge formation. The large angle around the bridge oxygen O(10) is no doubt due to the steric hindrance caused by the two bulky groups attached to this atom. The anisotropic temperature factors listed in Table 3 were decoded into their thermal vibrational ellipsoids. The cage skeleton carbon atoms exhibit relatively isotropic thermal motion with amplitudes smaller than those of the chlorine atoms which in addition exhibit more anisotropic motion. The greatest vibrational amplitudes and anisotropy of motion are experienced by the chlorosulfonate group which seems to be in torsional vibration about the O(10)-S bridging bond. These results are also evident in the stereoscopic drawing (Fig. 5). (c) Fig. 8. Angles outside of the carbon skeleton. (a) Around apex carbons, group (a); (b), group (b); (c), group (c). The authors are grateful to Dr E.E. Gilbert of the General Chemical Division of the Allied Chemical Corporation, Morristown, New Jersey for the samples of the cage compounds and discussions on various chemical aspects of the cage molecules. The intensity data used in the present structure analysis were measured by Dr P. Saha at the Crystallographic Laboratory of the Pennsylvania State University in 1959. #### References Almenningen, A., Bastiansen, O. & Skancke, P. N. (1961). Acta Chem. Scand. 15, 711. Bednowitz, A. L. & Post, B. (1965). Abstract ACA Summer Meeting, Gatlinburg, Tennessee. BEDNOWITZ, A. L. & POST, B. (1966). Acta Cryst. 21, 566. DUNITZ, J. D. (1949). Acta Cryst. 2, 1. FLEISCHER, E. B. (1964). J. Amer. Chem. Soc. 86, 3889. GILBERT, E. E. (1957). U.S. Reissue Patent 24,397. GILBERT, E. E. & GIOLITO, S. L. (1958). U.S. Reissue Patent 24,435. GILBERT, E. E. & LOMBARDO, P. (1962). U.S. Patent 3,037,906. GREENBERG, B. & Post, B. (1966). Abstract ACA Winter Meeting, Austin, Texas. International Tables for X-Ray Crystallography (1962). Birmingham: Kynoch Press. JOHNSON, C. K. (1965). Oak Ridge National Laboratory Report ORNL-3794. KARLE, J. & HAUPTMAN, H. (1953). Monograph, ACA. KARLE, I. L. & KARLE, J. (1963). Acta Cryst. 16, 969. Karle, I. L., Karle, J., Owen, T. B. & Hoard, J. L. (1965). Acta Cryst. 18, 345. MARGULIS, T. N. (1965). Acta Cryst. 19, 857. McBee, E. T., Roberts, C. W., Idol, J. D., Jr. & Earle, R. H., Jr. (1956). J. Amer. Chem. Soc. 78, 1511. McBee, E. T., Dilling, W. L. & Braendlin, H. P. (1962). J. Org. Chem. 27, 2704. Newcomer, J. S. & McBee, E. T. (1949a). J. Amer. Chem. Soc. 71, 946. Newcomer, J. S. & McBee, E. T. (1949b). J. Amer. Chem. Soc. 71, 952. OKAYA, Y., PEPINSKY, R. & GILBERT, E. E. (1960). Abstract ACA Annual Meeting, Washington, D.C. OKAYA, Y. (1966). Abstract ACA Annual Meeting, Austin, Texas. OWEN, T. B. & HOARD, J. L. (1951). Acta Cryst. 4, 172. PRINS, H. J. (1946). Rec. Trav. chim. Pays-Bas, 65, 455. UNGNADE, H. E. & McBee, E. T. (1958). Chem. Rev. 58, 249. ZIJP, D. H. & GERDING, H. (1958). Rec. Trav. chim. Pays-Bas, 77, 682. Fig. 9. Angles in the chlorosulfonate group.